potential evapotranspiration
technical report 2007 supplementary material
Contents

Figures are for the following climate variables:

Potential evapotranspiration (% change)
Figure S15 Annual .. 3
Figure S16 Summer ... 4
Figure S17 Autumn ... 5
Figure S18 Winter ... 6
Figure S19 Spring ... 7

© CSIRO 2007
Disclaimer: No responsibility will be accepted by CSIRO or the Bureau of Meteorology for the accuracy of the projections in or inferred from this report, or for any person’s reliance on, or interpretations, deductions, conclusions or actions in reliance on, this report or any information contained in it.

The figures in this document provide best estimate, 10th percentile and 90th percentile projections for 2030, 2050 and 2070 for six SRES emission scenarios (B1, B2, A2, A1B, A1T, A1FI), and supplement material in Chapter 5 Regional Climate Change Projections of the Climate Change in Australia Technical Report 2007 (available at www.climatechangeinaustralia.gov.au).
Figure S15:
Best estimate, 10th percentile and 90th percentile annual potential evapotranspiration change (%) for 2030, 2050 and 2070 and six SRES emission scenarios.
Figure S16:
Best estimate, 10th percentile and 90th percentile summer potential evapotranspiration change (%) for 2030, 2050 and 2070 and six SRES emission scenarios.
Figure S17: Best estimate, 10th percentile and 90th percentile autumn potential evapotranspiration change (%) for 2030, 2050 and 2070 and six SRES emission scenarios.
Figure S18:
Best estimate, 10th percentile and 90th percentile winter potential evapotranspiration change (%) for 2030, 2050 and 2070 and six SRES emission scenarios.
Figure S19:
Best estimate, 10th percentile and 90th percentile spring potential evapotranspiration change (%) for 2030, 2050 and 2070 and six SRES emission scenarios.